How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

An investigation that gives you the opportunity to make and justify predictions.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

The clues for this Sudoku are the product of the numbers in adjacent squares.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Given the products of adjacent cells, can you complete this Sudoku?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you make square numbers by adding two prime numbers together?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This task follows on from Build it Up and takes the ideas into three dimensions!