How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Can you use this information to work out Charlie's house number?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you use the information to find out which cards I have used?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

This dice train has been made using specific rules. How many different trains can you make?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you replace the letters with numbers? Is there only one solution in each case?