The clues for this Sudoku are the product of the numbers in adjacent squares.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Given the products of adjacent cells, can you complete this Sudoku?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

A few extra challenges set by some young NRICH members.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

These eleven shapes each stand for a different number. Can you use the number sentences to work out what they are?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

You need to find the values of the stars before you can apply normal Sudoku rules.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Investigate the different ways you could split up these rooms so that you have double the number.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?