Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

An investigation that gives you the opportunity to make and justify predictions.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Can you use the information to find out which cards I have used?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you find all the ways to get 15 at the top of this triangle of numbers?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

This task follows on from Build it Up and takes the ideas into three dimensions!

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Investigate the different ways you could split up these rooms so that you have double the number.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.