In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

There are lots of different methods to find out what the shapes are worth - how many can you find?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

My dice has inky marks on each face. Can you find the route it has taken? What does each face look like?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Can you use this information to work out Charlie's house number?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

How many trapeziums, of various sizes, are hidden in this picture?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Investigate the different ways you could split up these rooms so that you have double the number.