Find the values of the nine letters in the sum: FOOT + BALL = GAME

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you replace the letters with numbers? Is there only one solution in each case?

Given the products of adjacent cells, can you complete this Sudoku?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

An activity making various patterns with 2 x 1 rectangular tiles.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

You need to find the values of the stars before you can apply normal Sudoku rules.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?