The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Find out what a "fault-free" rectangle is and try to make some of your own.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you find all the different triangles on these peg boards, and find their angles?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you find all the different ways of lining up these Cuisenaire rods?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Find out about Magic Squares in this article written for students. Why are they magic?!

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?