How many models can you find which obey these rules?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

These practical challenges are all about making a 'tray' and covering it with paper.

If you had 36 cubes, what different cuboids could you make?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Can you draw a square in which the perimeter is numerically equal to the area?

This activity investigates how you might make squares and pentominoes from Polydron.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.