Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Investigate the different ways you could split up these rooms so that you have double the number.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Can you use this information to work out Charlie's house number?

There are lots of different methods to find out what the shapes are worth - how many can you find?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

What could the half time scores have been in these Olympic hockey matches?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

My cousin was 24 years old on Friday April 5th in 1974. On what day of the week was she born?

Jack has nine tiles. He put them together to make a square so that two tiles of the same colour were not beside each other. Can you find another way to do it?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Arrange 3 red, 3 blue and 3 yellow counters into a three-by-three square grid, so that there is only one of each colour in every row and every column

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?