Search by Topic

Resources tagged with Working systematically similar to Multiplication Square Jigsaw:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 339 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Working systematically

problem icon

One to Fifteen

Stage: 2 Challenge Level: Challenge Level:1

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

problem icon

Arrangements

Stage: 2 Challenge Level: Challenge Level:1

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

problem icon

It Figures

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

problem icon

Waiting for Blast Off

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

problem icon

The Moons of Vuvv

Stage: 2 Challenge Level: Challenge Level:1

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

problem icon

A Square of Numbers

Stage: 2 Challenge Level: Challenge Level:1

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

problem icon

Factor Lines

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

problem icon

Mystery Matrix

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

problem icon

Combining Cuisenaire

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find all the different ways of lining up these Cuisenaire rods?

problem icon

Tetrafit

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

problem icon

Multiples Grid

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

problem icon

Red Even

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

problem icon

Peaches Today, Peaches Tomorrow....

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

problem icon

A First Product Sudoku

Stage: 3 Challenge Level: Challenge Level:1

Given the products of adjacent cells, can you complete this Sudoku?

problem icon

Neighbours

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

problem icon

Counters

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

problem icon

Greater Than or Less Than?

Stage: 2 Challenge Level: Challenge Level:1

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

problem icon

Making Maths: Double-sided Magic Square

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

problem icon

Seven Flipped

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

problem icon

How Old Are the Children?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

problem icon

Seven Pots of Plants

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

problem icon

The Problem-solving Classroom

Stage: 1 and 2 Challenge Level: Challenge Level:1

problem icon

The Pet Graph

Stage: 2 Challenge Level: Challenge Level:1

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

problem icon

Snails' Trails

Stage: 2 Challenge Level: Challenge Level:1

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

problem icon

Egyptian Rope

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

problem icon

Ancient Runes

Stage: 2 Challenge Level: Challenge Level:1

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

problem icon

Plate Spotting

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

problem icon

Advent Sudoku

Stage: 3 Challenge Level: Challenge Level:1

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

problem icon

Counting Cards

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

problem icon

Adding Plus

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

problem icon

Symmetry Challenge

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

problem icon

Brush Loads

Stage: 2 Challenge Level: Challenge Level:1

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

problem icon

Calendar Cubes

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

problem icon

Tri.'s

Stage: 2 Challenge Level: Challenge Level:1

How many triangles can you make on the 3 by 3 pegboard?

problem icon

A Mixed-up Clock

Stage: 2 Challenge Level: Challenge Level:1

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

problem icon

You Owe Me Five Farthings, Say the Bells of St Martin's

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

problem icon

1 to 8

Stage: 2 Challenge Level: Challenge Level:1

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

problem icon

Eight Queens

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

problem icon

Two on Five

Stage: 1 and 2 Challenge Level: Challenge Level:2 Challenge Level:2

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

problem icon

Room Doubling

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Investigate the different ways you could split up these rooms so that you have double the number.

problem icon

Ice Cream

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

problem icon

Pouring the Punch Drink

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

problem icon

Quadrilaterals

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

problem icon

The Pied Piper of Hamelin

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

problem icon

Sealed Solution

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

problem icon

Extra Challenges from Madras

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A few extra challenges set by some young NRICH members.

problem icon

Octa Space

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

problem icon

Oranges and Lemons, Say the Bells of St Clement's

Stage: 3 Challenge Level: Challenge Level:1

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

problem icon

Pasta Timing

Stage: 2 Challenge Level: Challenge Level:1

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

problem icon

Fake Gold

Stage: 2 Challenge Level: Challenge Level:1

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?