Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you make square numbers by adding two prime numbers together?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Find the values of the nine letters in the sum: FOOT + BALL = GAME

A few extra challenges set by some young NRICH members.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

You need to find the values of the stars before you can apply normal Sudoku rules.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Have a go at balancing this equation. Can you find different ways of doing it?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you work out some different ways to balance this equation?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?