Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

An activity making various patterns with 2 x 1 rectangular tiles.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What is the best way to shunt these carriages so that each train can continue its journey?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

These practical challenges are all about making a 'tray' and covering it with paper.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

In how many ways can you stack these rods, following the rules?

Investigate the different ways you could split up these rooms so that you have double the number.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

This task follows on from Build it Up and takes the ideas into three dimensions!

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Can you find all the different ways of lining up these Cuisenaire rods?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

How many different triangles can you make on a circular pegboard that has nine pegs?

Find out what a "fault-free" rectangle is and try to make some of your own.