This activity investigates how you might make squares and pentominoes from Polydron.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Can you draw a square in which the perimeter is numerically equal to the area?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Can you find all the different triangles on these peg boards, and find their angles?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many different triangles can you make on a circular pegboard that has nine pegs?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An activity making various patterns with 2 x 1 rectangular tiles.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.