Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Two sudokus in one. Challenge yourself to make the necessary connections.

A Sudoku that uses transformations as supporting clues.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Four small numbers give the clue to the contents of the four surrounding cells.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

This Sudoku, based on differences. Using the one clue number can you find the solution?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This Sudoku requires you to do some working backwards before working forwards.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Solve the equations to identify the clue numbers in this Sudoku problem.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Given the products of diagonally opposite cells - can you complete this Sudoku?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

The challenge is to find the values of the variables if you are to solve this Sudoku.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?