Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you use this information to work out Charlie's house number?

In this matching game, you have to decide how long different events take.

How many different triangles can you make on a circular pegboard that has nine pegs?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Investigate the different ways you could split up these rooms so that you have double the number.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?