My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Can you draw a square in which the perimeter is numerically equal to the area?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Find out what a "fault-free" rectangle is and try to make some of your own.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

This activity investigates how you might make squares and pentominoes from Polydron.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

An activity making various patterns with 2 x 1 rectangular tiles.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.