Find out what a "fault-free" rectangle is and try to make some of your own.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you find all the different ways of lining up these Cuisenaire rods?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Can you find all the different triangles on these peg boards, and find their angles?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

An activity making various patterns with 2 x 1 rectangular tiles.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

In this matching game, you have to decide how long different events take.

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

How many different triangles can you make on a circular pegboard that has nine pegs?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Try out the lottery that is played in a far-away land. What is the chance of winning?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.