Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

What could the half time scores have been in these Olympic hockey matches?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

Can you use this information to work out Charlie's house number?

Investigate the different ways you could split up these rooms so that you have double the number.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In how many ways can you stack these rods, following the rules?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?