You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?
Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?
This challenge focuses on finding the sum and difference of pairs of two-digit numbers.
A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?
There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.
What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?
You have 5 darts and your target score is 44. How many different ways could you score 44?
Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?
There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?
Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?
Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.
Using the statements, can you work out how many of each type of rabbit there are in these pens?
Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?
On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?
Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?
Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.
This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!
Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.
This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!
What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.
How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?
There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.
Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?
There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?
Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?
Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.
Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.
Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?
This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.
Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.
This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?
Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?
Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?
There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?
This task follows on from Build it Up and takes the ideas into three dimensions!
This task depends on groups working collaboratively, discussing and reasoning to agree a final product.
Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?
In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?
Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?
Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?
Can you use the information to find out which cards I have used?
George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?
Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.
Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.
On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?
In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?
Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?
The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?
How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?
Ben has five coins in his pocket. How much money might he have?