An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

A challenging activity focusing on finding all possible ways of stacking rods.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Find out what a "fault-free" rectangle is and try to make some of your own.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many different triangles can you make on a circular pegboard that has nine pegs?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

How many different symmetrical shapes can you make by shading triangles or squares?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Try out the lottery that is played in a far-away land. What is the chance of winning?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.