Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

This dice train has been made using specific rules. How many different trains can you make?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Try out the lottery that is played in a far-away land. What is the chance of winning?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

In this matching game, you have to decide how long different events take.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you substitute numbers for the letters in these sums?

Can you use the information to find out which cards I have used?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Number problems at primary level that require careful consideration.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Ben has five coins in his pocket. How much money might he have?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

This task follows on from Build it Up and takes the ideas into three dimensions!

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?