Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Number problems at primary level that require careful consideration.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Can you use the information to find out which cards I have used?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you make square numbers by adding two prime numbers together?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you use this information to work out Charlie's house number?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Can you replace the letters with numbers? Is there only one solution in each case?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

What happens when you round these three-digit numbers to the nearest 100?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Can you work out some different ways to balance this equation?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Have a go at balancing this equation. Can you find different ways of doing it?