Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

How could you arrange at least two dice in a stack so that the total of the visible spots is 18?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you work out some different ways to balance this equation?

Can you make square numbers by adding two prime numbers together?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you replace the letters with numbers? Is there only one solution in each case?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Can you use the information to find out which cards I have used?

These two group activities use mathematical reasoning - one is numerical, one geometric.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

What happens when you round these three-digit numbers to the nearest 100?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.