Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Can you find all the different ways of lining up these Cuisenaire rods?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

In this matching game, you have to decide how long different events take.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Given the products of adjacent cells, can you complete this Sudoku?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.