Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you find all the different ways of lining up these Cuisenaire rods?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

An activity making various patterns with 2 x 1 rectangular tiles.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many different triangles can you make on a circular pegboard that has nine pegs?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

These practical challenges are all about making a 'tray' and covering it with paper.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Find out what a "fault-free" rectangle is and try to make some of your own.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Investigate the different ways you could split up these rooms so that you have double the number.

Can you find all the different triangles on these peg boards, and find their angles?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?