Number problems at primary level that require careful consideration.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you replace the letters with numbers? Is there only one solution in each case?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.