A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you use the information to find out which cards I have used?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use the clues about the symmetrical properties of these letters to place them on the grid.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

My dice has inky marks on each face. Can you find the route it has taken? What does each face look like?

Number problems at primary level that require careful consideration.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Ben has five coins in his pocket. How much money might he have?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Can you substitute numbers for the letters in these sums?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

This task follows on from Build it Up and takes the ideas into three dimensions!

These two group activities use mathematical reasoning - one is numerical, one geometric.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How many ways can you find of tiling the square patio, using square tiles of different sizes?