Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

Can you make square numbers by adding two prime numbers together?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

An investigation that gives you the opportunity to make and justify predictions.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you use this information to work out Charlie's house number?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?