Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Can you draw a square in which the perimeter is numerically equal to the area?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

This activity investigates how you might make squares and pentominoes from Polydron.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you find all the different triangles on these peg boards, and find their angles?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

An investigation that gives you the opportunity to make and justify predictions.

How many different triangles can you make on a circular pegboard that has nine pegs?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?