This activity investigates how you might make squares and pentominoes from Polydron.

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Can you draw a square in which the perimeter is numerically equal to the area?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Can you find all the different triangles on these peg boards, and find their angles?

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

How many different triangles can you make on a circular pegboard that has nine pegs?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

These practical challenges are all about making a 'tray' and covering it with paper.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

What is the best way to shunt these carriages so that each train can continue its journey?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.