Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

How many different symmetrical shapes can you make by shading triangles or squares?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

An investigation that gives you the opportunity to make and justify predictions.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Two sudokus in one. Challenge yourself to make the necessary connections.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

This activity investigates how you might make squares and pentominoes from Polydron.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Find out about Magic Squares in this article written for students. Why are they magic?!

Two sudokus in one. Challenge yourself to make the necessary connections.

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Can you draw a square in which the perimeter is numerically equal to the area?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

A Sudoku that uses transformations as supporting clues.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.