Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Two sudokus in one. Challenge yourself to make the necessary connections.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Two sudokus in one. Challenge yourself to make the necessary connections.

A Sudoku that uses transformations as supporting clues.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Given the products of diagonally opposite cells - can you complete this Sudoku?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

This Sudoku requires you to do some working backwards before working forwards.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Solve the equations to identify the clue numbers in this Sudoku problem.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

This Sudoku, based on differences. Using the one clue number can you find the solution?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Four small numbers give the clue to the contents of the four surrounding cells.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

If you had 36 cubes, what different cuboids could you make?

Can you find all the different triangles on these peg boards, and find their angles?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

You need to find the values of the stars before you can apply normal Sudoku rules.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?