Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

This challenge extends the Plants investigation so now four or more children are involved.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

A challenging activity focusing on finding all possible ways of stacking rods.

Find out what a "fault-free" rectangle is and try to make some of your own.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Two sudokus in one. Challenge yourself to make the necessary connections.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Given the products of diagonally opposite cells - can you complete this Sudoku?

A Sudoku that uses transformations as supporting clues.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

A few extra challenges set by some young NRICH members.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?