A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A few extra challenges set by some young NRICH members.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Find out what a "fault-free" rectangle is and try to make some of your own.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

You need to find the values of the stars before you can apply normal Sudoku rules.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Given the products of adjacent cells, can you complete this Sudoku?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.