A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Jack has nine tiles. He put them together to make a square so that two tiles of the same colour were not beside each other. Can you find another way to do it?

Arrange 3 red, 3 blue and 3 yellow counters into a three-by-three square grid, so that there is only one of each colour in every row and every column

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

In this matching game, you have to decide how long different events take.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

You need to find the values of the stars before you can apply normal Sudoku rules.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Find out what a "fault-free" rectangle is and try to make some of your own.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?