An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

How many models can you find which obey these rules?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Two sudokus in one. Challenge yourself to make the necessary connections.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Find out what a "fault-free" rectangle is and try to make some of your own.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Two sudokus in one. Challenge yourself to make the necessary connections.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Find out about Magic Squares in this article written for students. Why are they magic?!

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.