An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Two sudokus in one. Challenge yourself to make the necessary connections.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Two sudokus in one. Challenge yourself to make the necessary connections.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Find out what a "fault-free" rectangle is and try to make some of your own.

A Sudoku that uses transformations as supporting clues.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

How many models can you find which obey these rules?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

A few extra challenges set by some young NRICH members.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Try out the lottery that is played in a far-away land. What is the chance of winning?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Can you find all the different triangles on these peg boards, and find their angles?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?