The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you make square numbers by adding two prime numbers together?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Have a go at balancing this equation. Can you find different ways of doing it?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Ben has five coins in his pocket. How much money might he have?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This dice train has been made using specific rules. How many different trains can you make?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you use the information to find out which cards I have used?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you work out some different ways to balance this equation?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you use this information to work out Charlie's house number?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you substitute numbers for the letters in these sums?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

This task follows on from Build it Up and takes the ideas into three dimensions!

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Number problems at primary level that require careful consideration.

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?