An investigation that gives you the opportunity to make and justify predictions.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Can you find all the ways to get 15 at the top of this triangle of numbers?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Have a go at balancing this equation. Can you find different ways of doing it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

What could the half time scores have been in these Olympic hockey matches?

Can you work out some different ways to balance this equation?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Investigate the different ways you could split up these rooms so that you have double the number.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you make square numbers by adding two prime numbers together?