These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

The Red Express Train usually has five red carriages. How many ways can you find to add two blue carriages?

The brown frog and green frog want to swap places without getting wet. They can hop onto a lily pad next to them, or hop over each other. How could they do it?

Can you find out in which order the children are standing in this line?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

How many different shapes can you make by putting four right- angled isosceles triangles together?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

My coat has three buttons. How many ways can you find to do up all the buttons?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

This train line has two tracks which cross at different points. Can you find all the routes that end at Cheston?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

This challenge is about finding the difference between numbers which have the same tens digit.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.