Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you find all the different ways of lining up these Cuisenaire rods?

In this matching game, you have to decide how long different events take.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Can you find the chosen number from the grid using the clues?

This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Try this matching game which will help you recognise different ways of saying the same time interval.

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Try out the lottery that is played in a far-away land. What is the chance of winning?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

What happens when you try and fit the triomino pieces into these two grids?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

An activity making various patterns with 2 x 1 rectangular tiles.