Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

How could you arrange at least two dice in a stack so that the total of the visible spots is 18?

What two-digit numbers can you make with these two dice? What can't you make?

Can you work out some different ways to balance this equation?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Find all the numbers that can be made by adding the dots on two dice.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you find the chosen number from the grid using the clues?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

What happens when you try and fit the triomino pieces into these two grids?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

If you put three beads onto a tens/ones abacus you could make the numbers 3, 30, 12 or 21. What numbers can be made with six beads?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are lots of different methods to find out what the shapes are worth - how many can you find?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

My coat has three buttons. How many ways can you find to do up all the buttons?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.