Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

If you put three beads onto a tens/ones abacus you could make the numbers 3, 30, 12 or 21. What numbers can be made with six beads?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

What two-digit numbers can you make with these two dice? What can't you make?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What could the half time scores have been in these Olympic hockey matches?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Can you find the chosen number from the grid using the clues?

How many trains can you make which are the same length as Matt's, using rods that are identical?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

This challenge is about finding the difference between numbers which have the same tens digit.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Find out about Magic Squares in this article written for students. Why are they magic?!

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?