Can you find the chosen number from the grid using the clues?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

An investigation that gives you the opportunity to make and justify predictions.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

My coat has three buttons. How many ways can you find to do up all the buttons?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

Can you find out in which order the children are standing in this line?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

The brown frog and green frog want to swap places without getting wet. They can hop onto a lily pad next to them, or hop over each other. How could they do it?

The Red Express Train usually has five red carriages. How many ways can you find to add two blue carriages?