In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

This article for primary teachers suggests ways in which to help children become better at working systematically.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Find out about Magic Squares in this article written for students. Why are they magic?!

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Number problems at primary level that require careful consideration.

Can you find all the different ways of lining up these Cuisenaire rods?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

How many trains can you make which are the same length as Matt's, using rods that are identical?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How many different triangles can you make on a circular pegboard that has nine pegs?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Find out what a "fault-free" rectangle is and try to make some of your own.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you fill in the empty boxes in the grid with the right shape and colour?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

An investigation that gives you the opportunity to make and justify predictions.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.