A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A challenging activity focusing on finding all possible ways of stacking rods.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Can you find the chosen number from the grid using the clues?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Can you use the information to find out which cards I have used?

What two-digit numbers can you make with these two dice? What can't you make?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!