This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

My cousin was 24 years old on Friday April 5th in 1974. On what day of the week was she born?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

This task follows on from Build it Up and takes the ideas into three dimensions!