Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

In how many ways can you stack these rods, following the rules?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?