Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Can you find the chosen number from the grid using the clues?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you replace the letters with numbers? Is there only one solution in each case?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Have a go at balancing this equation. Can you find different ways of doing it?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you make square numbers by adding two prime numbers together?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

My coat has three buttons. How many ways can you find to do up all the buttons?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

The Red Express Train usually has five red carriages. How many ways can you find to add two blue carriages?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

This challenge is about finding the difference between numbers which have the same tens digit.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

What two-digit numbers can you make with these two dice? What can't you make?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.