Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

What is the best way to shunt these carriages so that each train can continue its journey?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

These practical challenges are all about making a 'tray' and covering it with paper.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What happens when you try and fit the triomino pieces into these two grids?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

How many models can you find which obey these rules?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

An activity making various patterns with 2 x 1 rectangular tiles.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?