Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.
The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?
How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?
How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?
Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.
Arrange the shapes in a line so that you change either colour or shape in the next piece along. Can you find several ways to start with a blue triangle and end with a red circle?
How many different triangles can you make on a circular pegboard that has nine pegs?
These practical challenges are all about making a 'tray' and covering it with paper.
What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?
Find all the numbers that can be made by adding the dots on two dice.
Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?
In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?
Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?
Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?
A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?
I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?
An activity making various patterns with 2 x 1 rectangular tiles.
Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.
Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?
Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?
Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?
Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.
What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?
There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.
How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.
The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?
There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?
Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?
A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?
Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?
This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.
In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?
How many ways can you find of tiling the square patio, using square tiles of different sizes?
Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.
This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.
Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?
Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?
Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.
Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?
Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?
How can you put five cereal packets together to make different shapes if you must put them face-to-face?
Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?
My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?
Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.
When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?
Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?
These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.
Using the statements, can you work out how many of each type of rabbit there are in these pens?
El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?