How many different triangles can you draw on the dotty grid which each have one dot in the middle?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you find all the different triangles on these peg boards, and find their angles?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you find all the different ways of lining up these Cuisenaire rods?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

What happens when you try and fit the triomino pieces into these two grids?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

How many different rhythms can you make by putting two drums on the wheel?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

This challenge is about finding the difference between numbers which have the same tens digit.

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

In this matching game, you have to decide how long different events take.

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.