How many different triangles can you make on a circular pegboard that has nine pegs?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Can you find all the different triangles on these peg boards, and find their angles?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

How many trains can you make which are the same length as Matt's, using rods that are identical?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What happens when you try and fit the triomino pieces into these two grids?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many different rhythms can you make by putting two drums on the wheel?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Investigate the different ways you could split up these rooms so that you have double the number.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?