Number problems at primary level that require careful consideration.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

This challenge is about finding the difference between numbers which have the same tens digit.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you find the chosen number from the grid using the clues?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?