What happens when you try and fit the triomino pieces into these two grids?
Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?
Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.
Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?
Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?
Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?
Can you find all the different ways of lining up these Cuisenaire rods?
In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?
Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?
Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?
Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?
A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?
Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?
An activity making various patterns with 2 x 1 rectangular tiles.
Can you work out how to balance this equaliser? You can put more than one weight on a hook.
This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?
If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?
Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.
You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?
Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?
What is the best way to shunt these carriages so that each train can continue its journey?
Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?
Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.
Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.
10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?
These practical challenges are all about making a 'tray' and covering it with paper.
How many different rhythms can you make by putting two drums on the wheel?
Design an arrangement of display boards in the school hall which fits the requirements of different people.
Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.
If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?
Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?
Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?
Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?
In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?
These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.
El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?
This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .
Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.
This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?
What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?
Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?
Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.
How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?
How many different triangles can you draw on the dotty grid which each have one dot in the middle?
Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?
My coat has three buttons. How many ways can you find to do up all the buttons?
How many models can you find which obey these rules?